Bay Area Scientists in Schools Presentation Plan

Lesson Name: Squishy Circuits
Presenter(s): EECS Outreach @ Berkeley

Grade Level: 4

Standards Connection(s): Electricity: Simple circuits, components, materials

Next Generation Science Standards:
4-PS3-2. Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
4-PS3-4. Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.</td>
<td>-The faster a given object is moving, the more energy it possesses. (4-PS3-1)</td>
<td>-Energy can be transferred in various ways and between objects. (4-PS3-1), (4-PS3-2), (4-PS3-3), (4-PS3-4)</td>
</tr>
<tr>
<td>-Make observations to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. (4-PS3-2)</td>
<td>-Energy can be moved from place to place by moving objects or through sound, light, or electric currents. (4-PS3-2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS3.B: Conservation of Energy and Energy Transfer</td>
<td>Connections to Engineering, Technology, and Applications of Science</td>
</tr>
<tr>
<td></td>
<td>-Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. (4-PS3-2)</td>
<td>Influence of Science, Engineering and Technology on Society and the Natural World</td>
</tr>
<tr>
<td></td>
<td>-Light also transfers energy from place to place. (4-PS3-2)</td>
<td>-Engineers improve existing technologies or develop new ones. (4-PS3-4)</td>
</tr>
<tr>
<td></td>
<td>-Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. (4-PS3-2), (4-PS3-4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS3.D: Energy in Chemical Processes and Everyday Life</td>
<td>Connections to Nature of Science</td>
</tr>
<tr>
<td></td>
<td>-The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use. (4-PS3-4)</td>
<td>Science is a Human Endeavor</td>
</tr>
<tr>
<td></td>
<td>-Most scientists and engineers work in teams. (4-PS3-4)</td>
<td>-Science affects everyday life. (4-PS3-4)</td>
</tr>
</tbody>
</table>
Common Core State Standards Connections:

ELA/Literacy –

W.4.7 Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-PS3-2),(4-PS3-4)

W.4.8 Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-PS3-1),(4-PS3-2),(4-PS3-3),(4-PS3-4)

Mathematics –

4.OA.A.3 Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (4-PS3-4)

FOSS Connections: Energy and Electromagnetism

Teaser:

What happens to electricity once it reaches your phone, computer, or television? How do engineers use electricity to make tools from microwaves to microprocessors? Can Play-Doh be used in engineering as well as arts and crafts? In this module, students perform hands-on experiments to learn about electrical circuits by building them with Play-Doh. After an introductory presentation providing intuitive analogies to think about how electrons flow in conducting material, students work through self-guided activities to test these concepts firsthand.

Objective: As a result of your lesson, what will students learn? What will they be able to do?

After this lesson, students will be introduced to basic concepts of electricity—what electrons are and how material shape impacts conductivity. In a series of hands-on activities where students use Play-Doh to build a basic circuit with a light emitting diode (LED) array, students can compare series and parallel resistance, see how resistivity varies with a material's length and width, and even build an adjustable light switch.

Vocabulary/Definitions: 3 – 6 important (new) words

Electrons, circuit, resistance, conductor, insulator

Materials:

What will you bring with you?

- Play-Doh
- LED bar graphs
- 9V batteries and connectors
- Worksheet (see attached)
- (optional) Toothpicks to help cut Play-Doh in precise shapes

What should students have ready?

- Pencil or pen for worksheet
Classroom Set-up:
Student grouping, Power/Water, A/V, Light/Dark, set-up/clean-up time needed
- A projector is required for the introductory presentation.
- Students will work individually to construct Play-Doh circuits. The Play-Doh is not too messy on tables or desks if it is cleaned afterwards. Allow five minutes for cleanup at the end of the lesson.

Classroom Visit

1. **Personal Introduction:** 5 Minutes
 Who are you? What do you want to share with students and why? How will you connect this with students’ interests and experiences?
 We’ll introduce ourselves as engineering students from Berkeley, talk about what we do and also talk about where we come from to help establish a more personal connection.

2. **Topic Introduction:** 10 Minutes
 What questions will you ask to learn from students? Big Idea(s), vocabulary, assessing prior knowledge...
 This module begins with a discussion about where students have seen electricity in their current lives. From there, we talk about how to think of electricity, presenting a go-kart analogy to electron flow. Using this analogy, we ask students to think about how material properties (such as material shape and width) can influence the flow of electrons within a circuit. We also talk about the differences between conductors and insulators, building to the idea that they can build circuits by hand using Play-Doh as a lead-in to the activity.

3. **Learning Experience(s):** 30 Minutes
 What will you do, what will kids do? Demonstrations, hands-on activities, images, games, discussion, writing, measuring... Describe in order, including instructions to kids.
 The students will each get some Play-Doh, an LED array, and a 9V battery with connector to test out different activities, detailed in the attached handout. Note that because the LED only lets current flow in one direction, the positive terminal of the battery must be connected to the side of the LED with a notch. Here is a summary of the activities:
 - Short circuits:
 - Activity: Students compare the brightness through the LED before and after a piece of play-doh is connected between both battery terminals:
- Result: Building a ‘shortcut’ through the play-doh will prevent the electrons from going through the light, effectively turning it off. This ‘shortcut’ is known as a ‘short circuit.’

- Series vs. parallel connections:
 - Activity: Students compare the brightness through the LED when multiple play-doh strips are connected between the light and the battery:

- Result: Adding more strips (adding parallel connections between the light and the battery) will make the light brighter, because you give more paths for the electrons to move from the battery to the light, just like adding more lanes in a street will help reduce traffic.

- Width, length, and resistivity:
 - Activity: Students compare the brightness of the LED when the Play-Doh is made longer or thinner.

- Result: Making the Play-Doh longer (with the same thickness) will make the LED dimmer, because the electrons have to travel further in order to get through the LED and back to the battery. The thicker Play-Doh (with the same length) will make the LED brighter, because there is a wider path for the electrons to travel through.

- Adjustable light switch:
Activity: Students make two halves of the LED array have different distances between the Play-Doh and the battery, by adding a loop of Play-Doh to one end of the LED array.

Result: The half of the LED array that has the least Play-Doh will be brightest, while the other will be longer. Moving the 'switch' back and forth lets you change the balance in brightness between the two halves of the array.

3. **Wrap-up: Sharing Experiences**
5 Minutes

Putting the pieces together – how will students share learning, interpret experience, build vocabulary?

At the end, we will relate the activities back to things the students are familiar with. The last circuit is an example of a voltage divider, which is something found in everyday objects like adjustable light switches and sliding controls for fan speeds. Parallel circuits are the sort of connection used to tie Christmas lights together, so that a single light breaking won’t turn off the entire string of lights.

4. **Connections & Close:**
5 Minutes

What else might kids relate this to from their real-life experience? How can they learn more?

Thanks and good-bye! Clean-up.

To conclude, we will talk about how all of this relate to the circuits that go into phones, tablets, and computers today. Modern circuit design focuses on tiny circuits (more than a billion tiny switches in less than a square inch!) that are cut out into specific shapes according to defined patterns, much like the way students cut out Play-Doh shapes in the activity.

Total 55 Minutes

Follow-up – After Presentation

Suggest students write a letter explaining “How we learned about ________?”

List or attach examples of activities, websites, connections for additional learning.

Attach worksheets, hand-outs, visuals used in classroom presentation.
Play-Doh circuits are a great “try it yourself” activity for students. Circuits can be made out of store-bought or homemade Play-Doh.

Students can take a look at the TED talk about squishy circuits by AnnMarie Thomas: http://www.ted.com/talks/annmarie_thomas_squishy_circuits

There are also instructions about how to make conductive and non-conductive Play-Doh from household materials on the following site: http://courseweb.stthomas.edu/apthomas/SquishyCircuits/howTo.htm