Bay Area Scientists in Schools
Presentation Plan

Lesson Name Materials and Structures
Presenter(s) Science and Engineering Community Outreach

Grade Level 2 Standards Connection(s) Motion can be changed with force; objects fall to earth unless held up

Teaser:
Our world is full of things that are engineered—cars, buildings, even everyday things like tables and chairs! A large amount of effort and planning goes into figuring out how to make many of the items we use every day. In this lesson, students will learn about the relationship between materials and structures: that is, the substances an item is made up of vs. how those substances are arranged. Each student group will figure out how to build a paper structure capable of supporting a medium-sized book, demonstrating the power of a strong structural arrangement (even when using a relatively weak material).

Objective:
Students will learn that the strength of a structure is not just determined by the strength of its materials, but also by the way its materials are shaped. Students will learn that engineers can conserve resources by arranging materials in carefully designed and creative ways.

Vocabulary/Definitions:
3 – 6 important (new) words
Design
Structure
Material
Properties
Function
Trade-off

Materials:
What will you bring with you?
 Paper
 Tape
 Styrofoam cup(s)
 Cardboard box
 Egg carton

What should students have ready (pencils, paper, scissors)?
Each group needs a heavy book (textbook) with which to test their structure.

Classroom Set-up:
Student grouping, Power/Water, A/V, Light/Dark, set-up/clean-up time needed
Groups of 3-4, ideally, we’ll have one volunteer per student group

Classroom Visit

1. **Personal Introduction:**

 Who are you? What do you want to share with students and why? How will you connect this with students’ interests and experiences?

 We’re NAMES... We study Mechanical Engineering, Chemistry, etc. Does anyone know what engineers do? *(Each volunteer describes what they do, why it is interesting, and what they studied in school)*

2. **Topic Introduction:**

 What questions will you ask to learn from students? Big Idea(s), vocabulary, assessing prior knowledge...

 How many of you have ever built something? What are some things that you’ve built? Engineers have a special word for things that they build: **structures**.

 When you build structures, what do you use to build? Blocks? Legos? What else? The things that we use to build structures are called “**materials.**”

 When you build, are your [forts/walls/whatever] easy to knock over or hard? [followup: why was it easy/hard? Can you remember how it looked?] Do you ever need to hold something up? What? How do you make sure you can support your [doll/action figure/baby brother]? Do you just make a solid brick of [legos/blocks]? Different materials have different properties that make them good or bad for building certain structures. Take, for example, Styrofoam [show cup]: what are some properties of Styrofoam? (Shapeable, holds heat, weak) What if you tried to build a chair made out of this piece of styrofoam? Do you think that would work?

 Do you think this Styrofoam cup could hold up this heavy book? (Show of hands: yes vs. no) Why do you think yes? Why do you think no? Sometimes, materials can surprise you! A set of Styrofoam cups can hold up this heavy book! [Demonstrate using 4 styrofoam cups and a textbook].

 [Hold up/pass around piece of cardboard cut from egg carton] Does anyone know what structure this is from? What material is it made from? How strong do you think this piece of
thin, flimsy paper is? What could we do with it? [Show egg carton] Well, you can stack these up very high and they will still protect the eggs inside from getting crushed!

Engineers have many ways to make a strong structure out of a weak material. How many of you have ever put things into a cardboard box? What kind of things can you put in there? How much weight can a cardboard box hold? Has anyone ever taken apart a piece of cardboard to see what is inside? [demonstrate by peeling apart a sheet of cardboard in front of them] This wavy part is called “corrugation”—it’s what allows us to make a strong piece of cardboard using only three thin pieces of paper. Imagine if we tried to make a strong piece of cardboard by just stacking many sheets of paper together—it would take a LOT more paper! That box would weigh so much that it would be hard to lift it, even without anything inside.

Who has seen a car tire? What is it made of? Has anyone seen the inside of the tire? What’s inside? Why do cars and trucks use tires, instead of just a solid wheel of rubber? (material cost, better function—friction, shock-absorbing…) Why does a big truck have more than four tires? [Ask students] Discuss how only a few tires would not be enough to support a truck, but many tires works!

2. Learning Experience(s): ___5____ Minutes
 What will you do, what will kids do? Demonstrations, hands-on activities, images, games, discussion, writing, measuring… Describe in order, including instructions to kids.

 We’ve seen how structure can play a big part in the strength of an object. Now it’s time to put it into practice! You guys are going to be engineers for a day. Using the materials we give you—paper, tape, and a book—you need to build a structure that can support the book at least two fists [demonstrate] above the table. You can use as much paper and tape as you want, but the structure can’t be taped to the table. You’ll have [X] minutes to work on your structure, and then we’ll have you share your structure with the rest of the class.

 [Give students 5-10 minutes to work on their structures in groups. Observe their progress and ask them to tell you what they are trying, observing, concluding. Why did they decide on the structure they did? Let them know when there is one minute left. Stop and have students show what they did, explaining what they observed while they were building.]

 In the real world, engineers have to work with a limited amount of time and money, so they might not be able to do exactly what they want. This means that we have to learn to work with smaller amounts of materials! Sometimes we also have other restrictions, like size, shape, or even appearance! Often, we have to make compromises that we call “trade-offs.” [Give
examples of trade-offs, like cutting out an extra feature to save space/money, spending more money on a higher-quality material, etc]

As engineers, your job is to now to build a structure that can support the same book two fists above the table using only [X] pieces of paper. You’ll have [X] minutes to work on your structure, and then we’ll have you share your structure with the rest of the class.

[Give students 5-10 minutes to work on their structures in groups. Observe their progress and ask them to tell you what they are trying, observing, concluding. Why did they decide on the structure they did?]

Let them know when there is one minute left. Stop and have students show what they did, explaining what they observed while they were building.]

[Discuss that paper is a weak material, but when shaped in certain ways, it is very strong!]

3. **Wrap-up: Sharing Experiences**

 30 Minutes

Putting the pieces together – how will students share learning, interpret experience, build vocabulary?

What are some things that you learned today about materials and structures? Did you see anything that surprised you? What was difficult? What “hints” helped the most? What did you learn?

What if you wanted to use popsicle sticks to support a book? How would this be different? How are the properties of popsicle sticks different from the properties of paper? [Stronger material—maybe they will say that this is better. If so, point out that this is true, but they are more expensive, more complicated, would take longer, would need glue, etc]. What do engineers call these differences? **[trade-offs]**

Can you think of a case where you might need to use Popsicle sticks instead of paper to build a structure? [holding up a really big book, holding up a person, if you didn’t have paper]

4. **Connections & Close:**

 Minutes

What else might kids relate this to from their real-life experience? How can they learn more?
Thanks and good-bye! Clean-up.

From now on, pay attention to the structure of the things around you. How did engineers use good design? What are some of the trade-offs they might have made? Take a photo or draw a picture of something you observe that has an interesting structure or interesting material properties.
Follow-up – After Presentation

Suggest students write a letter explaining “How we learned about ___________?”
List or attach examples of activities, websites, connections for additional learning.
Attach worksheets, hand-outs, visuals used in classroom presentation.

Students can write letters to the volunteers describing what they learned or talking about other experiments they’ve done with structures.
Berkeley Engineers and Mentors lesson plan archive: http://beam.berkeley.edu/resources/lesson-plans